If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-2t-17=0
a = 1; b = -2; c = -17;
Δ = b2-4ac
Δ = -22-4·1·(-17)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-6\sqrt{2}}{2*1}=\frac{2-6\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+6\sqrt{2}}{2*1}=\frac{2+6\sqrt{2}}{2} $
| 10x-4x+4=8x-4 | | 5x+4-2(x+3)=0 | | x^2-18x+98=0 | | F(x)=-3x2+2x+3 | | 2x+25=9 | | 8x+6=12x-2 | | 4(w-9)=-4w+28 | | 18-13+n=4 | | 0.25÷3=x÷2.5/2 | | 2x+1/5=7/2 | | 3x/2-5=-2x | | 10(x-5)=230 | | x*1.25x=710 | | 5x+2x-3x+30=50 | | 3x-14=82 | | 6-3(x+1)=-2(x-1) | | 2401^x=7 | | 2x-(-x+10)=-4 | | (X+1)+(x+2)+(x+3)=132 | | 2x+(10-x)=-4 | | 2x2-10x+6=0 | | X+1+x2+x+3=132 | | 5(-3x-2)-(x-3)=-4(4+5)+13 | | -3x(2-2)+5(x+3)=0 | | u+1.84=8.16 | | 2x+(10+x)=-4 | | 2x+(-10+x)=-4 | | 3^t=28 | | 2x-(-10+x)=-4 | | 2600(12)=6(2600+x) | | 2x-(10+x)=-4 | | 9q-10=15q+26 |